Rashba effect in the graphene/ni(111) system.
نویسندگان
چکیده
We report on angle-resolved photoemission studies of the electronic pi states of high-quality epitaxial graphene layers on a Ni(111) surface. In this system the electron binding energy of the pi states shows a strong dependence on the magnetization reversal of the Ni film. The observed extraordinarily large energy shift up to 225 meV of the graphene-derived pi band peak position for opposite magnetization directions is attributed to a manifestation of the Rashba interaction between spin-polarized electrons in the pi band and the large effective electric field at the graphene/Ni interface. Our findings show that an electron spin in the graphene layer can be manipulated in a controlled way and have important implications for graphene-based spintronic devices.
منابع مشابه
Unravelling the mechanisms of giant spin-orbit splitting in graphene on metals
Weak interaction between graphene and metals tends to preserve the graphene’s characteristic Dirac cones almost intact in the band structure. However, recently it has been shown in experiments that even in case of very weak graphene/substrate coupling the presence of a heavy 5d metal can induce giant spin-orbit splitting (SO) of Rashba type in the graphene’s π bands, although the intrinsic SO c...
متن کاملRashba splitting of graphene-covered Au(111) revealed by quasiparticle interference mapping
We report on low-temperature scanning tunneling spectroscopy measurements on epitaxial graphene flakes on Au(111). We show that using quasiparticle interference (QPI) mapping, we can discriminate between the electronic systems of graphene and Au(111). Beyond the scattering vectors, which can be ascribed to the elastic scattering within each of the systems, we observe QPI features related to the...
متن کاملGraphene on Ni(111): Electronic Corrugation and Dynamics from Helium Atom Scattering
Using helium atom scattering, we have studied the structure and dynamics of a graphene layer prepared in situ on a Ni(111) surface. Graphene/Ni(111) exhibits a helium reflectivity of ∼20% for a thermal helium atom beam and a particularly small surface electron density corrugation ((0.06 ± 0.02) Å peak to peak height). The Debye-Waller attenuation of the elastic diffraction peaks of graphene/Ni(...
متن کاملTheory of electronic and spin-orbit proximity effects in graphene on Cu(111)
We study orbital and spin-orbit proximity effects in graphene adsorbed to the Cu(111) surface by means of density functional theory (DFT). The proximity effects are caused mainly by the hybridization of graphene π and copper d orbitals. Our electronic structure calculations agree well with the experimentally observed features. We carry out a graphene-Cu(111) distance dependent study to obtain p...
متن کاملElectronic structure and magnetic properties of the graphene/Fe/Ni111 intercalation-like system.
The electronic structure and magnetic properties of the graphene/Fe/Ni(111) system were investigated via combination of the density functional theory calculations and electron-spectroscopy methods. This system was prepared via intercalation of thin Fe layers (1 ML) underneath graphene on Ni(111) and its inert properties were verified by means of photoelectron spectroscopy. Intercalation of iron...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 100 10 شماره
صفحات -
تاریخ انتشار 2008